
BALAJI INSTITUTE OF TECHNOLOGY & SCIENCES

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DBMS LAB MANUAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL FOR THE ACADEMIC YEAR: 2023-24

COURSE : B. TECH

YEAR : II

SEMESTER : I - SEM

DEPARTMENT : CSE

SUBJECT : DATABASE MANAGEMENT SYSTEMS LAB

FACULTY HOD

CS407PC: DATABASE MANAGEMENT SYSTEMS LAB

Co-requisites: Co-requisite of course “Database Management Systems”

Course Objectives:

 Introduce ER data model, database design and normalization

 Learn SQL basics for data definition and data manipulation

Course Outcomes:

 Design database schema for a given application and apply normalization

 Acquire skills in using SQL commands for data definition and data manipulation.

 Develop solutions for database applications using procedures, cursors and triggers.

LIST OF EXPERIMENTS:

1. Concept design with E-R Model

2. Relational Model

3. Normalization

4. Practicing DDL commands

5. Practicing DML commands

6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)

7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.

8. Triggers (Creation of insert trigger, delete trigger, update trigger)

9. Procedures

10.Usage of Cursors

INTRODUCTION TO DBMS

A Database Management System (DBMS) is software designed to store, retrieve, define, and manage data in a

database.

DBMS allows users to create their own databases as per their requirement. The term “DBMS” includes the user of the
database and other application programs. It provides an interface between the data and the software application.

 1960 - Charles Bachman designed first DBMS system

 1970 - Codd introduced IBM'S Information Management System (IMS)

 1976- Peter Chen coined and defined the Entity-relationship model also know as the ER model

 1980 - Relational Model becomes a widely accepted database component
 1985- Object-oriented DBMS develops.
 1990s- Incorporation of object-orientation in relational DBMS.

 1991- Microsoft ships MS access, a personal DBMS and that displaces all other personal DBMS products.
 1995: First Internet database applications
 1997: XML applied to database processing. Many vendors begin to integrate XML into DBMS products.

Characteristics of Database Management System

 Provides security and removes redundancy

 Self-describing nature of a database system

 Insulation between programs and data abstraction
 Support of multiple views of the data

 Sharing of data and multiuser transaction processing
 DBMS allows entities and relations among them to form tables.
 It follows the ACID concept (Atomicity, Consistency, Isolation, and Durability).
 DBMS supports multi-user environment that allows users to access and manipulate data in parallel.

list of some popular DBMS system:

 MySQL

 Microsoft Access
 Oracle
 PostgreSQL

 Microsoft SQL Server etc.

 IBM DB2

Types of DBMS

Four Types of DBMS systems are:

 Hierarchical database

 Network database

 Relational database

 Object-Oriented database

Advantages of DBMS

 DBMS offers a variety of techniques to store & retrieve data

 DBMS serves as an efficient handler to balance the needs of multiple applications using the same data

 Uniform administration procedures for data
 Application programmers never exposed to details of data representation and storage.
 A DBMS uses various powerful functions to store and retrieve data efficiently.
 Offers Data Integrity and Security

 The DBMS implies integrity constraints to get a high level of protection against prohibited access to data.
 A DBMS schedules concurrent access to the data in such a manner that only one user can access the same data at a time
 Reduced Application Development Time

Disadvantage of DBMS

DBMS may offer plenty of advantages but, it has certain flaws-

 Cost of Hardware and Software of a DBMS is quite high which increases the budget of your organization.

 Most database management systems are often complex systems, so the training for users to use the DBMS is required.
 In some organizations, all data is integrated into a single database which can be damaged because of electric failure or

database is corrupted on the storage media

 Use of the same program at a time by many users sometimes lead to the loss of some data.
 DBMS can't perform sophisticated calculations

EXPERIMENT- 1

CONCEPT DESIGN WITH E-R MODEL

AIM: To Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong and weak

entities. Indicate the type of relationships (total/partial). Incorporate generalization, aggregation and specialization

etc wherever required.

E-R Model

Analyze the problem carefully and come up with entities in it. Identify what data has to bepersisted in the

database. This contains the entities, attributes etc.

Identify the primary keys for all the entities. Identify the other keys like candidate keys, partialkeys, if any.

Definitions:

Entity: the object in the ER Model represents is an entity which is thing in the real world with anindependent

existence.

ER-Model:

Describes data as entities, relationships and attributes .The ER-Model is important preliminary for its role

in database design. ER Model is usually shown pictorially using entity relationship diagrams.

Attributes:

The properties that characterize an entity set are called its attributes. An attribute is referred to bythe terms data

items, data element, data field item.

Candidate key:

It can be defined as minimal super key or irreducible super key. In other words an attribute or combination

of attributes that identifies the record uniquely but none of its proper subsets can identify the record uniquely.

Candidate key:

It can be defined as minimal super key or irreducible super key. In other words an attribute or combination

of attributes that identifies the record uniquely but none of its proper subsets can identify the record uniquely.

Partial key:

A weak entity type normally has a partial key which is the set of attributes that can uniquelyidentify weak

entity that are related to the same owner entity.

Bus

 BusNo

 Source

 Destination

 CoachType

SCHEMA

Bus: Bus(BusNo :String ,Source : String, Destination: String, Coach Type: String)

Ticket

 TicketNo

 DOJ

 Address

 ContactNo

 BusNo

 SeatNo

 Source

 Destination

SCHEMA

Ticket (TicketNo: string, DOJ: date, Address: string, ContactNo : string, BusNo:String

SeatNo : Integer, Source: String, Destination: String)

Passenger

 PassportID

 TicketNo

 Name

 ContactNo

 Age

 Sex

 Address

SCHEMA

Passenger (PassportID: String, TicketNo :string, Name: String, ContactNo: string, Age:

integer, Sex: character, Address: String)

Reservation

 PNRNo

 DOJ

 No_of_seats

 Address

 ContactNo

 BusNo

 SeatNo

SCHEMA

Reservation(PNRNo: String, DOJ: Date, NoofSeats: integer , Address: String ,ContactNo: String, ,

BusNo: String,SeatNo:Integer)

Cancellation

 PNRNo

 DOJ

 SeatNo

 ContactNo

 Status

SCHEMA

Cancellation (PNRNo: String, DOJ: Date, SeatNo: integer, ContactNo: String, Status:

String)

CONCEPT DESIGN WITH E-R MODEL

EXPERIMENT – 2

RELATIONAL MODEL

AIM: To Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion.

1. Bus: Bus(BusNo: String, Source: String, Destination: String, CoachType: String)

ColumnName Datatype Constraints Type of Attributes

BusNo Varchar(10) Primarykey Single-value

Source Varchar(20) Single-value

Destination Varchar(20) Simple

CoachType Varchar(10) Simple

Mysql>create table Bus(BusNo varchar(10),source varchar(20),Destination varchar(20),coachType

varchar(10),primary key(BusNo));

Mysql>desc Bus;

Ticket:

Ticket(TicketNo: string, DOJ: date, Address:string,ContactNo: string, BusNo:String, SeatNo :Integer, Source: String,
Destination: String)

ColumnName Datatype Constraints Type of Attributes

TicketNo Varchar(20) Primary Key Single-valued

DOJ Date Single-valued

Address Varchar(20) Composite

ContactNo Integer Multi-valued

BusNo Varchar(10) Foreign Key Single-valued

SeatNo Integer Simple

Source Varchar(10) Simple

Destination Varchar(10) Simple

Mysql> create table ticket(ticketno varchar(20), doj date,address varchar(20),contactno int, busno

varchar(20),seatno int,source varchar(10),destination varchar(10),primary key(ticketno,busno) foreign

key(busno)references bus(busno);

Mysql>desc Ticket;

Passenger:

Passenger(PassportID: String, TicketNo:string,Name: String, ContactNo:string,Age: integer, Sex: character,

Address: String);

ColumnName Datatype Constraints
Type of

Attributes

PassportID Varchar(15) Primary Key Single-valued

TicketNo Varchar(20) Foreign Key Single-valued

Name Varchar(20) Composite

ContactNo Varchar(20) Multi-valued

Age Integer Single-valued

Sex character Simple

Address Varchar(20) Composite

Mysql> Create table passenger(passportID varchar(15) ,TicketNo varchar(15),Name

varchar(15),ContactNo varchar(20),Age integer, sex char(2),address varchar(20), primary

key(passportID,TicketNo),foreign key(TicketNo) references Ticket(TicketNo));

Mysql> desc passenger;

Reservation:

Reservation(PNRNo: String, DOJ: Date, NoofSeats: integer , Address: String ,ContactNo:

String, , BusNo: String,SeatNo:Integer)

ColumnName Datatype Constraints Type of Attributes

PNRNo Varchar(20) Primary

Key

Single-valued

DOJ date Single-valued

No_of_Seats Integer Simple

Address Varchar(20) Composite

ContactNo Varchar(10) Multi-valued

BusNo Varchar(10) ForeignKey Single-valued

SeatNo Integer Simple

Mysql> Create table Resevation(PNRNo varchar(20),DOJ date,NoofSeates integer,Address

varchar(20),ContactNovarchar(20),BusNo varchar(20),SeatNo integer, primary key(PNRNo,BusNo),foreign

key(BusNo) references Bus(BusNo));

Mysql> desc reservation;

Cancellation:

Cancellation (PNRNo: String,DOJ: Date, SeatNo: integer,ContactNo: String,Status:

String)

ColumnName Datatype Constraints Type of Attributes

PNRNo Varchar(10) Primary Key Single-valued

DOJ date Single-valued

SeatNo Integer Simple

ContactNo Varchar(15) Multi-valued

Status Varchar(10) Simple

Mysql> create table cancellation(PNRNo varchar(10),DOJ date,SeatNo integer,

ContactNo varchar(15),Status varchar(10), primary key(PNRNo), foreign

key(PNRNo) references reservation(PNRNo));

Mysql> desc cancellation;

EXPERIMENT – 3

NORMALIZATION

AIM: Apply the database Normalization techniques for designing relational database tables to minimize

duplication of information like 1NF, 2NF, 3NF, BCNF.

Until now we have created table without using any constraint, Hence the tables have not been givenany

instructions to filter what is being stored in the table.

The following are the types of integrity constraints

1. Domain Integrity constraints

2. Entity Integrity constraints

3. Referential Integrity constraint

4. Oracle allows programmers to define constraints

5. Column Level

6. Table Level

Column Level constraints:

If data constraints are defined along with the column definition when creating or altering a table structure,

they are column level constraints. Column level constraints are applied to the current column. The current

column is the column that immediately precedes the constraints i.e. they are local to a specific column. Column

level constraints cannot be applied if the data constraints span across the multiple columns in a table.

Table Level Constraint:

If the data constraints are defined after defining all the table columns when creating or altering a table

structure, it is a table level constraint. Table Level constraints mostly used when data constraints spans across

multiple columns in a table.

Domain Integrity Constraints:

These constraints set a range and any violations that take place will prevent the user from performing the

manipulations that caused the breached.

Entity Integrity Constraints:
This type of constraints are further classified into

1. Unique Constraint

2. Primary Key Constraint

Unique Constraint:

The purpose of unique key is to ensure that information in the column(s) is unique i.e. the value entered

in column(s) defined in the unique constraint must not be repeated across the column. A table may have many

unique keys. If unique constraint is defined in more than one column (combination of columns), it is said to be

composite unique key. Maximum combination of columns that a composite unique key can contain is 16.

Primary Key Constraint:

A primary key is one or on more columns(s) in a table to uniquely identify each row in the table. A primary

key column in a table has a special attribute. It defines the column, as a mandatory column i.e. the column

cannot be left blank and should have a unique value. Here by default not null constraint is attached with the

column. A multicolumn primary key is called a Composite primary key. The only function of a primary key in a

table is to uniquely identify a row. A table can have only one primary key.

Referential Integrity Constraint:

In this category there is only one constraint and it is Foreign Key & References to establish a Parent- child_ or

a Master-detail_ relationship between two tables having a common column, we make use of referential integrity

constraint. Foreign key represent relationships between tables. A foreign key is a column whose values are

derived from the primary key or unique key. The table in which the foreign key is defined is called a foreign

table or Detail table. The table that defines the primary or unique keys and is referenced by the foreign key is

called the Primary table or Master table. The master table can be referenced in the foreign key definition by

using references keyword. If the column name is not specified, by default, Oracle references the primary key in

the master table.

The existence of a foreign key implies that the table with the foreign key is related to the master table from

which the foreign key is derived. A foreign key must have a corresponding primary key or a unique key value

in a master table.

Principles of Foreign Key Constraint:

Rejects an insert or update of a value in a particular column, if a corresponding value does not exist inthe

master table.

Deletion of rows from the Master table is not possible if detail table having corresponding values.

Primary key or unique key must in Master table.
Requires that the foreign key column(s) and reference column(s) have same data type

References constraint defined at column level

Normalization is a process of converting a relation to be standard form by decomposition a larger relation

intosmaller efficient relation that depicts a good database design.

 1NF: A Relation scheme is said to be in 1NF if the attribute values in the relation are atomic.i.e., Mutli –

valuedattributes are not permitted.

 2NF: A Relation scheme is said to be in 2NF,iff and every Non-key attribute is fully functionally dependent

On primary Key.

 3NF: A Relation scheme is said to be in 3NF,iff and does not have transitivity dependencies. A Relation is

Said to be 3NF if every determinant is a key for each & every functional dependency.

 BCNF: A Relation scheme is said to be BCNF if the following statements are true for eacg FD P->Q in set F

Of FDs that holds for each FD. P->Q in set F of FD’s that holds over R. Here P is the subset of attributes of

R & Qis a single attribute of R.

The given FD is a trival

P is a super key.

Normalized tables are:-

Mysql> create table Bus2(BusNo varchar(20) primary key,Source varchar(20),Destination varchar(20));

Mysql>Create table passenger4(PPN varchar(15) Primary key,Name varchar(20),Age integer,Sex

char,Addressvarchar(20));

Mysql> Create table PassengerTicket(PPN varchar(15) Primary key,TicketNo integer);

Mysql> Create table Reservation2(PNRNO integer Primary key, JourneyDate DateTime,NoofSeats int,Address

varchar(20),ContactNo Integer);

Mysql> create table Cancellation2(PNRNO Integer primary key,JourneyDate DateTime,NoofSeats

Integer,Address varchar(20),ContactNo Integer,foreign key(PNRNO) references Reservation2(PNRNO));

Mysql> Create table Ticket2(TicketNo Integer Primary key,JourneyDate DateTime, Age Int(4),Sex char(2),Source

varchar(20),Destination varchar(20),DeptTime varchar(2));

EXPERIMENT – 4

PRACTICING DDL COMMANDS

AIM: Installation of Mysql in Ubuntu.

MySQL is a fast, easy to use relational database. It is currently the most popular open- source

database. It is very commonly used in conjunction with PHP scripts to create powerful and

dynamic server-side applications.

MySQL is used for many small and big businesses. It is developed, marketed and supported by

MySQL AB, a Swedish company. It is written in C and C++.

 Relational Database Management System (RDBMS): MySQL is a relational database

management system.

 Easy to use: MySQL is easy to use. You have to get only the basic knowledge of SQL.

You can build and interact with MySQL with only a few simple SQL statements.

 It is secure: MySQL consist of a solid data security layer that protects sensitive data

from intruders. Passwords are encrypted in MySQL.

 Client/ Server Architecture: MySQL follows a client /server architecture. There is a

database server (MySQL) and arbitrarily many clients (application programs), which

communicate with the server; that is, they query data, save changes, etc.

 Free to download: MySQL is free to use and you can download it from MySQL official

website.

 It is scalable: MySQL can handle almost any amount of data, up to as much as 50 million

rows or more. The default file size limit is about 4 GB. However, you can increase this

number to a theoretical limit of 8 TB of data.

Installation of Mysql. In this week you will learn creating databases. How to create table, altering

the database, dropping table and databases if not required. You will also try truncate, rename

commands etc…

RESOURCE:

Ubuntu (Linux) / My Sql database

PROCEDURE:

 Installation of MySql:

Follow these steps on to install MySql in Ubuntu:

1. Open Terminal and run below command.sudo

apt-get install mysql-server

2. Give the root password.

3. Wait for the installation to finish.

4. The installer itself start the MySql server. To check whether MySql server is running or not, runbelow

command.

sudo netstat-tap | grep mysql

5. To make sure. Your MySql installation works fine with Apache and PHP, run below command.It will

install necessary modules to connect to a MySql database through PHP using Apache.

sudo apt-get install libapache2-mod-auth-mysql php5-mysql

6. Installation is completed.

SQL

 SQL stands for Structured Query Language. It is used for storing and managing data in

relational database management system (RDMS).

 It is a standard language for Relational Database System. It enables a user to create,read,

update and delete relational databases and tables.

 All the RDBMS like MySQL, Informix, Oracle, MS Access and SQL Server use SQLas

their standard database language.

 SQL allows users to query the database in a number of ways, using English-like

statements.

AIM : Creating Tables and altering the Tables

Creation of databases:

mysql> show databases;

+ +

| Database |

+ +
| information_schema |

| mysql |

| test |

+ +

3 rows in set (0.09 sec)

mysql> create database groupa; Query OK, 1 row

affected (0.01 sec)mysql> use groupa;

Database changed

Mysql>Create table passenger2(passportId Integer Primary Key,Name varchar(10) Not

Null,Age Integer Not Null,Sex char,Address varchar(20) Not Null);

Mysql> desc passenger2;

USING ALTER COMMAND

Adding Extra column to Existing Table

Mysql>Alter table passenger3 add column TicketNo varchar(10);

Mysql>Alter Table passenger3 add Foreign key(TicketNo) references Ticket(TicketNo);

Mysql>Alter Table passenger3 Modify column Name varchar(20);

Mysql>Alter table passenger drop foreign key fk1;

Mysql> Alter table passenger2 Drop column TicketNo;

EXPERIMENT – 5

PRACTICING DML COMMANDS

AIM: Create a DML Commands are used to manage data within the scheme objects.

DML Commands:

INSERT COMMAND ON BUS2 & PASSENGER2 RELATIONS

mysql> select * from Bus2; Empty set (0.00 sec)

mysql> insert into Bus2 values(1234,'Hyderabad','Tirupathi');

Query OK, 1 row affected (0.03 sec)

mysql> insert into Bus2 values(2345,'Hyderabad','Banglore');

Query OK, 1 row affected (0.01 sec)

mysql> insert into Bus2 values(23,'Hyderabad','Kolkata');

Query OK, 1 row affected (0.03 sec)

mysql> insert into Bus2 values(45,'Tirupathi','Banglore');

Query OK, 1 row affected (0.03 sec)

mysql> insert into Bus2 values(34,'Hyderabad','Chennai');

Query OK, 1 row affected (0.03 sec)

mysql> select * from Bus2;

mysql> select * from Passenger2;

Empty set (0.00 sec)

mysql> insert into Passenger2 values(145,'Ramesh',45,'M','abc123');

Query OK, 1 row affected (0.05 sec)

mysql> insert into Passenger2 values(278,'Geetha',36,'F','abc124');

Query OK, 1 row affected (0.02 sec)

mysql> insert into Passenger2 values(4590,'Ram',30,'M','abc12');

Query OK, 1 row affected (0.03 sec)

mysql> insert into Passenger2 values(6789,'Ravi',50,'M','abc14');

Query OK, 1 row affected (0.03 sec)

mysql> insert into Passenger2 values(5622,'Seetha',32,'F','abc55');

Query OK, 1 row affected (0.03 sec)

mysql> select * from Passenger2;

UPDATE COMMAND ON BUS2 RELATION

UPDATE Selected Rows & Multiple Rows

mysql> Update Bus2 SET Source='Secundrabad' where BusNo=1234; Query OK, 1 row affected (0.05 sec)

Rows matched: 1 Changed: 1 Warnings: 0

DELETE COMMAND ON BUS2 RELATION

DELETES Selected Rows and Multiple Rows

mysql> Delete from Bus2 where BusNo=1234; Query OK, 1 row affected (0.05 sec)

mysql> select * from Bus2;

mysql> Delete from Bus2 where Source=’Secundrabad’; Query OK, 1 row affected (0.05 sec)

mysql> select * from Bus2;

EXPERIMENT – 6

Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)

Aim: Practice the following Queries:

1. Display unique PNR_NO of all passengers
2. Display all the names of male passengers.
3. Display the ticket numbers and names of all the passengers.
4. Find the ticket numbers of the passengers whose name start with ‘r’ and ends with ‘h’.
5. Find the names of Passengers whose age is between 30 and 45.
6. Display all the passengers names beginning with ‘A’.
7. Display the sorted list of Passengers names

mysql> insert into passenger2 values(82302,'Smith',23,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82303,'Neha',23,'F','Hyderabad');

Query OK, 1 row affected (0.01 sec)

mysql> insert into passenger2 values(82304,'Neha',35,'F','Hyderabad');

Query OK, 1 row affected (0.03 sec)

mysql> insert into passenger2 values(82306,'Ramu',40,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82308,'Aakash',40,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82402,'Aravind',42,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82403,'Avinash',42,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82502,'Ramesh',23,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

mysql> insert into passenger2 values(82602,'Rajesh',23,'M','Hyderabad');

Query OK, 1 row affected (0.02 sec)

RESERVATION2

mysql> insert into reservation2 values(10201,'2012-02-20 10:20:25',05,'HYD',9654 235242);

Query OK, 1 row affected (0.03 sec)

mysql> insert into reservation2 values(10202,'2012-02-22 10:22:25',05,'HYD',9654 232451);

Query OK, 1 row affected (0.02 sec)

mysql> insert into reservation2 values(10203,'2012-03-22 10:30:25',05,'DELHI',96 54587960);

Query OK, 1 row affected (0.01 sec)

mysql> insert into reservation2 values(10204,'2013-03-22 11:30:25',05,'CHENNAI', 9845761254);

Query OK, 1 row affected (0.02 sec)

1. Display unique PNR_NO of all reservation Mysql>Select

DISTINCT PNR_NO from Reservation;

PNR_No

10201

10202

10203

10204

2. Display all the names of male passengers.

mysql> Select p.name from passenger2 p

where p.passportid IN (select p2.passportid from passenger2 p2

where p2.sex='M');

3. Display the ticket numbers and names of all the passengers.

mysql> select t.ticketno,p.name from passengerticket t,passenger2 p where t.passportid = p.passportid;

4. Find the ticket numbers of the passengers whose name start with ‘r’ and ends with ‘h’.

MySQL> SELECT Name FROM Passenger WHERE name LIKE ‘R%H’

Name

Rajesh

Ramesh

Ramesh

5. Find the names of Passengers whose age is between 30 and 45.

MySQL> SELECT Name FROM PASSENGER WHERE AGE BETWEEN 30 AND 45

6. Display all the passengers names beginning with ‘A’.

MySQL> SELECT * FROM PASSENGER WHERE NAME LIKE ‘A%’;

Name

Akash

Arivind

Avinash

7. Display the sorted list of Passengers names

MySQL> SELECT NAME FROM PASSENGER ORDER BY NAME;

EXPERIMENT – 7

Querying Aggregate Functions(COUNT,SUM,AVG,MAX and MIN)

Aim: To Practice Queries using Aggregate functions for the following

1. Write a Query to display the information present in the passenger and cancellation

tables

2. Display the number of days in a week on which the AP123 bus is available

3. Find number of tickets booked for each PNR_No using GROUP BY CLAUSE

4. Find the distinct PNR Numbers that are present.

1. Write a Query to display the information present in the passenger and cancellation tables

MYSQL> CREATE TABLE CANCELLATION2(PNRNO INT PRIMARY KEY,JOURNEYDATE DATETIME,

NOOFSEATS INT,ADDRESS VARCHAR(20),CONTACTNO INT,STATUS VARCHAR(10),FOREIGN

KEY(PNRNO) REFERENCES RESERVATION2(PNRNO));

mysql> INSERT INTO CANCELLATION2 VALUES(10201,'2012-02-20

10:20:25',2,'HYD',9654235242,'CONFIRM');

mysql> INSERT INTO CANCELLATION2 VALUES(10202,'2012-02-22

10:22:25',2,'HYD',9654232451,'CONFIRM');

mysql> INSERT INTO CANCELLATION2 VALUES(10203,'2012-03-22

10:30:25',2,'DELHI',9654587960,'CONFIRM');

MySQL> SELECT * FROM RESERVATION UNION

SELECT * FROM CANCELLATION;

2. Display the Minimum age of the Passenger

MySQL> SELECT MIN(AGE) as MINAGE FROM PASSENGER;

3. Find number of tickets booked for each PNR_No using GROUP BY CLAUSE

MySQL> SELECT PNRNO,SUM(No_of_SEATS) AS SUM_OF_SEATS FROM

RESERVATION2 GROUP BY PNRNO;

4 Find the distinct PNR Numbers that are present.

MySQL> SELECT DISTINCT PNR_NO FROM RESERVATION2;

5 Mysql> select sum(Noofseats) from Cancellation2;

6 Find the total number of cancelled seats.

MySQL> select sum(noofseats) as canceled_seats from cancellation2;

Creation and Droping of Views

mysql> create table students(sid int primary key,name varchar(15),login varchar(15), age

int,gpa real); mysql> create table Enrolled(sid int,cid int,grade varchar(5),primary

key(sid,cid), foreign key(sid) references students(sid));

mysql>create view BStudents(name,sid,course) AS SELECT

s.name,s.sid,E.cid from students s,enrolled E where s.sid=e.sid AND

E.grade='B';

Syntax: Drop view viewname;

Mysql> Drop view Bstudents; Mysql> Drop view Goodstudents;

DEPARTMENT OF CSE DBMS

EXPERIMENT – 8

TRIGGERS

Aim: Creation of insert trigger, delete trigger and update trigger.

Database Triggers:

Trigger defines an action the database should take when some database-related event occurs.

Triggers may be used to supplement declarative referential integrity, to enforce complex business rules,

or to audit changes to data. The code within a trigger, called a trigger body, is made up of PL/SQL

blocks. It’s like a stored procedure that is fired when an insert, update or delete command is issued

against associated table.

Triggers can be executed, or fired, in response to the following events:

A row is inserted into a table

A row in a table is updated A

row in a table is deleted

It is not possible to define a trigger to fire when a row is selected.

.

Types of Triggers:

A trigger ’s type is defined by the type of triggering transaction and by the level at which the trigger

is executed. In the following sections, you will see descriptions of these classifications, along

with relevant restrictions.

Row-Level Triggers:
Row-level triggers execute once for each row in a transaction. Row-level triggers are the most

commontype of trigger; they are often used in data auditing applications.

Statement-Level Triggers:
Statement-level triggers execute once for each transaction. For example, if a single transaction

inserted 500 rows into a table, then a statement-level trigger on that table would only be executed once.

INSTEAD OF Triggers:
You can use INSTEAD OF triggers to tell Oracle what to do instead of performing the actions

that invoked the trigger. For example, you could use an INSTEAD OF trigger on a view to

redirect inserts into table or to update multiple tables that are part of a view. You can use INSTEAD

OF triggers on either object views or relational views.

Uses of Triggers:
The possible uses for database triggers are varied and are limited only by your imagination.
Somecommon uses are listed below:

• Enforcing business rules

• Maintaining referential integrity

• Enforcing security

DEPARTMENT OF CSE DBMS

• Maintaining a historical log of changes

MySQL>CREATE TABLE BUS(BUSNO VARCHAR(10) NOT NULL, SOURCE

VARCHAR(10), DESTINATION VARCHAR(10), CAPACITY INT(2), PRIMARY

KEY(BUSNO));

MySQL>INSERT INTO BUS VALUES('AP123','HYD','CHENNAI','40');

CREATE TABLE BUS_AUDIT1(ID INT NOT NULL AUTO_INCREMENT, SOURCE

VARCHAR(10) NOT NULL, CHANGEDON DATETIME DEFAULT NULL, ACTION

VARCHAR(10) DEFAULT NULL, PRIMARY KEY(ID));

DEPARTMENT OF CSE DBMS

CREATE TRIGGER BEFORE_BUS_UPDATE BEFORE UPDATE ON BUS

FOR EACH ROW BEGIN

INSERT INTO BUS_AUDIT1

SET action='update', source=OLD.source, changedon=NOW(); END$$

UPDATE :

MySQL>UPDATE BUS SET SOURCE='KERALA' WHERE BUSNO='AP123'$$

DEPARTMENT OF CSE DBMS

SNo Source Changedon Action

1 Banglore 2014:03:23 12:51:00 Insert

2 Kerela 2014:03:25:12:56:00 Update

3 Mumbai 2014:04:26:12:59:02 Delete

INSERT:

CREATE TRIGGER BEFORE_BUS_INSERT BEFORE INSERT ON BUS

FOR EACH ROW BEGIN

INSERT INTO BUS_AUDIT1

SET action='Insert', source=NEW.source, changedon=NOW(); END$$

MYSQL>INSERT INTO BUS VALUES('AP789','VIZAG','HYDERABAD',30)$$

SNo Source Changedon Action

1 Banglore 2014:03:23 12:51:00 Insert

2 Kerela 2014:03:25:12:56:00 Update

3 Mumbai 2014:04:26:12:59:02 Delete

DEPARTMENT OF CSE DBMS

CREATE TRIGGER BEFORE_BUS_DELETE BEFORE DELETE ON BUS

FOR EACH ROW BEGIN

DELETE FROM BUS_AUDIT1

SET action='Insert', source=NEW.source, changedon=NOW(); END$$

DELETE FROM BUS WHERE SOURCE=’HYDERABAD’$$

SNo Source Changedon Action

1 Banglore 2014:03:23 12:51:00 Insert

2 Kerela 2014:03:25:12:56:00 Update

3 Mumbai 2014:04:26:12:59:02 Delete

Examples

CREATE TRIGGER updcheck1 BEFORE UPDATE ON passengerticket FOR EACH ROW

BEGIN

IF NEW.TicketNO > 60 THEN

SET New.TicketNo = New.TicketNo; ELSE

SET New.TicketNo = 0; END IF;

END;

DEPARTMENT OF CSE DBMS

DEPARTMENT OF CSE DBMS

EXPERIMENT – 9

PROCEDURES

Aim: Creation of stored Procedures and Execution of Procedures and Modification of

Procedures.

Ex1:

CREATE PROCEDURE BUS_PROC1() BEGIN

SELECT * FROM BUS;

END$$

CALL BUS_PROC1()$$

Ex2:

CREATE PROCEDURE SAMPLE2() BEGIN

DECLARE X INT(3); SET X=10;

SELECT X;

END$$

Mysql> CALL SAMPLE2()$$

DEPARTMENT OF CSE DBMS

Ex3: CREATE PROCEDURE SIMPLE_PROC(OUT PARAM1 INT) BEGIN

SELECT COUNT(*) INTO PARAM1 FROM BUS;

END$$

Mysql> CALL SIMPLE_PROC(@a)$$ Mysql> select @a;

DEPARTMENT OF CSE DBMS

EXPERIMENT – 10

Cursors
Aim: Declare a cursor that defines a result set. Open the cursor to establish the result set.

Fetch the data into local variables as needed from the cursor, one row at a time. Close the

cursor when done.

Cursors

In MySQL, a cursor allows row-by-row processing of the result sets. A

cursor is used for the result set and returned from a query. By using a

cursor, you can iterate, or by step through the results of a query and

perform certain operations on each row. The cursor allows you to iterate

through the result set and then perform the additional processing only on

the rows that require it.

In a cursor contains the data in a loop. Cursors may be different from

SQL commands that operate on all the rows in the returned by a

query at one time.

There are some steps we have to follow, given below :

□ Declare a cursor

□ Open a cursor statement

□ Fetch the cursor

□ Close the cursor

1 . Declaration of Cursor : To declare a cursor you must use the

DECLARE statement. With the help of the variables, conditions and

handlers we need to declare a cursor before we can use it. first of all we will

give the cursor a name, this is how we will refer to it later in the procedure.

We can have more than one cursor in a single procedure so its necessary to

give it a name that will in some way tell us what its doing. We then need to

specify the select statement we want to associate with the cursor. The SQL

statement can be any valid SQL statement and it is possible to use a

dynamic where clause using variable or parameters as we have seen

previously.

DEPARTMENT OF CSE DBMS

Syntax : DECLARE cursor_name CURSOR FOR select_statement;

2 . Open a cursor statement : For open a cursor we must use the open

statement.If we want to fetch rows from it you must open thecursor.

Syntax : OPEN cursor_name;

3 . Cursor fetch statement : When we have to retrieve the next row

from the cursor and move the cursor to next row then you need to fetch

the cursor.

Synatx : FETCH cursor_name INTO var_name;

If any row exists, then the above statement fetches the next row and cursor

pointer moves ahead to the next row.

4 . Cursor close statement : By this statement closed the open cursor.

Syntax: CLOSE_name;

By this statement we can close the previously opened cursor. If it is not

closed explicitly then a cursor is closed at the end of compound statement

in which that was declared.

Delimiter $$

Create procedure p1(in_customer_id int) begin

declare v_id int;

declare v_name varchar(20); declare v_finished integer default 0;

declare c1 cursor for select sid,sname from students where sid=in_customer_id; declare

continue handler for NOT FOUND set v_finished=1;

open c1; std:LOOP

fetch c1 into v_id,v_name; if v_finished=1 then

leave std; end if;

select concat(v_id,v_name); end LOOP std;

close c1; end;

DEPARTMENT OF CSE DBMS

DEPARTMENT OF CSE DBMS

ADDITIONAL PROGRAMMS

EMPLOYEES TABLE

mysql> create table Employees(ssn varchar(15),name varchar(20),lot int,PRIMARY

KEY(ssn)); mysql> insert into Employees values('123-22-3666','Attishoo',48);

mysql> insert into Employees values('321-31-5368','Smiley',22); mysql> insert into

Employees values('131-24-3650','Smethurst',35);

DEPARTMENT OF CSE DBMS

DEPARTMENT TABLE

mysql> create table Departments(did int,dname varchar(10),budget real, PRIMARY

KEY(did));

mysql> insert into Departments values(05,'CSE',500000);

mysql> insert into Departments values(04,'ECE',400000);

mysql> insert into Departments values(03,'ME',300000);

mysql> insert into Departments values(01,'CE',100000);

DEPARTMENT OF CSE DBMS

Sailors , Reserves , Boats Tables

Mysql> Create table Sailors(Sid integer PRIMARY KEY,sname varchar(15), rating int,age

real); Mysql>Create table Reserves(Sid int,Bid int,Day Date);

Mysql>Create table Boats(Bid int,Bname varchar(15),Color varchar(15);

DEPARTMENT OF CSE DBMS

mysql> select S.sname from sailors S, reserves R where S.sid=R.sid AND R.bid=103;

mysql> select sname from sailors s,Reserves R where S.sid=R.sid AND bid=103; mysql>

select R.sid from Boats B,Reserves R where B.bid=R.bid AND B.color='red';

mysql> select S.sname from sailors S,reserves R,Boats B where S.sid=R.sid AND

R.bid=B.bid AND B.color='red';

mysql> select B.color from Sailors S,Reserves R,Boats B where S.sid=R.sid AND

R.bid=B.bid AND S.sname='Lubber';

DEPARTMENT OF CSE DBMS

mysql> select S.sname,S.rating+1 AS rating from Sailors S,Reserves R1,Reserves R2 where

S.sid=R1.sid AND S.sid=R2.sid AND R1.day=R2.day AND R1.bid<>R2.bid;

mysql> select S1.sname AS name1,S2.sname AS name2 from sailors S1,sailors S2 where

2*S1.rating=S2.rating-1;

DEPARTMENT OF CSE DBMS

USING UNION , INTERSECT , AND EXCEPT

1).Find the names of sailors who have reserved a red or a green boat.

OR

2). Find the names of sailors who have reserved both a red and a green boat.

SELECT S.SNAME

FROM SAILORS S,RESERVES R,BOATS B

WHERE S.SID=R.SID AND R.BID=B.BID AND B.COLOR='red' INTERSECT

SELECT S2.SNAME

FROM SAILORS S2,RESERVES R2,BOATS B2

WHERE S2.SID=R2.SID AND R2.BID=B2.BID AND B2.COLOR='green';

NESTED QUERIES

1) Find the Names of sailors who have reserved boat 103

2) Find the names of Sailors who have reserved a red Boat

DEPARTMENT OF CSE DBMS

3) Find the names of Sailors who have NOT reserved a red Boat

Correlated Nested Queries:

1) Find the names of Sailors who have reserved a red Boat

Set Comparison Operators:

1) Find sailors whose rating is better than some sailor called Horatio

DEPARTMENT OF CSE DBMS

2) Find the sailors with the highest rating.

mysql> SELECT S.sid FORM Sailors WHERE S.rating>=ALL(SELECT S2.rating FROM

Sailors S2);

The GROUP BY and HAVING Clauses:

1) Find the age of the youngest sailor for each rating level.

2) Find the age of the youngest sailor who is eligible to vote for each rating level with at

least two such sailors

DEPARTMENT OF CSE DBMS

3) For each red boat , find the number of reservations for this boat

4) Find the average age of sailors for each rating level that has at least two sailors

DEPARTMENT OF CSE DBMS

	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	COURSE : B. TECH
	SEMESTER : I - SEM DEPARTMENT : CSE

	CS407PC: DATABASE MANAGEMENT SYSTEMS LAB
	Course Objectives:
	Course Outcomes:
	LIST OF EXPERIMENTS:

	INTRODUCTION TO DBMS
	CONCEPT DESIGN WITH E-R MODEL
	E-R Model
	ER-Model:
	Attributes:
	Candidate key:
	Candidate key: (1)
	Partial key:
	SCHEMA
	Ticket
	SCHEMA
	SCHEMA (1)
	Reservation
	SCHEMA (2)
	Cancellation
	SCHEMA (3)

	CONCEPT DESIGN WITH E-R MODEL
	Mysql>create table Bus(BusNo varchar(10),source varchar(20),Destination varchar(20),coachType varchar(10),primary key(BusNo));

	Ticket:
	Mysql> create table ticket(ticketno varchar(20), doj date,address varchar(20),contactno int, busno varchar(20),seatno int,source varchar(10),destination varchar(10),primary key(ticketno,busno) foreign key(busno)references bus(busno);

	Passenger:
	Mysql> Create table passenger(passportID varchar(15) ,TicketNo varchar(15),Name varchar(15),ContactNo varchar(20),Age integer, sex char(2),address varchar(20), primary key(passportID,TicketNo),foreign key(TicketNo) references Ticket(TicketNo));
	Reservation:
	Mysql> Create table Resevation(PNRNo varchar(20),DOJ date,NoofSeates integer,Address varchar(20),ContactNovarchar(20),BusNo varchar(20),SeatNo integer, primary key(PNRNo,BusNo),foreign key(BusNo) references Bus(BusNo));
	Cancellation:
	Mysql> create table cancellation(PNRNo varchar(10),DOJ date,SeatNo integer, ContactNo varchar(15),Status varchar(10), primary key(PNRNo), foreign key(PNRNo) references reservation(PNRNo));

	Normalized tables are:-
	EXPERIMENT – 4 PRACTICING DDL COMMANDS
	RESOURCE:

	Installation of MySql:

	SQL
	AIM : Creating Tables and altering the Tables
	DML Commands:
	mysql> select * from Bus2;
	mysql> select * from Passenger2;
	DELETE COMMAND ON BUS2 RELATION
	A row is inserted into a table A row in a table is updated A row in a table is deleted
	Cursors
	Cursors (1)
	The GROUP BY and HAVING Clauses:

